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We present detailed closed-form expressions for the evaluation and numerical calculation of 
atomic spin-orbit matrix elements in the unitary group approach. A minicomputer implemen- 
tation of the calculations is described. 

1. INTRODUCTION 

The conventional Racah scheme of atomic structure calculations becomes very 
cumbersome for systems involving many equivalent electrons. The use of seniority 
labels fails to label uniquely all the states for equivalent f electrons and beyond. 

A number of workers [5] have developed simplified rule using the unitary group 
approach, based on the properties of U(2Z + 1) and its unitary subgroups, for the 
application of the Weyl tableau representation of Gelfand basis states to problems 
involving many equivalent electrons. 

Drake and Schlesinger [3] have worked out closed-form expressions for the matrix 
elements of one- and two-body operators, using graphical methods of angular 
momentum analysis. The same authors showed that spin dependent operators are 
simply related to purely orbital operators, thereby removing a long-standing difficulty 
with the tableaux or unitary group formalism. As a direct consequence, spin-orbit 
type matrix elements are directly expressible in terms of one- and two-body operators 
alone. 

The purpose of the present paper is to report that we have programmed the 
evaluation of the spin-orbit matrix element in the unitary groups approach, on a 
PDP- 1 l/O3 minicomputer.’ We assume that the reader is familiar with the relevant 
literature and, in particular, with the paper of Drake and Schlesinger [3]. 

We shall give in the next section a detailed account of the closed-form expressions 
involved in the evaluation and numerical calculation of the spin-own-orbit operator 
matrix elements. These expressions are a direct outgrowth of previous work [3]. 

* Research supported by the Natural Sciences and Engineering Council of Canada. 
’ Our operating system is DEC-RTl 1 and the hardware includes an RK05 hard disk drive and a line 

printer. 
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UNITARY GROUP APPROACH 431 

In the third section we shall give an account of the minicomputer imp~ement~~io~ 
of the work. In the fourth section, a sample comparison of our results with ose 
listed by Karwowski et al. [4] will be given. 

2. SPIN-OWN-ORBIT MATRIX ELEMENTS 

In the present section we shall consider the matrix elements of the s~in-ow~-~rb~~ 
operator, which is defined by 

The matrix elements of (2.1) in the representation corresponding to t 
1 (a); lNS,MLM,) vectors is of the form (cf. [3, Eqs. 13, 42-44 and text]) 

where the vectors / (a); lNS,MLM,) refer to the spin-adapted tableau states deemed by 
the partition {a = N/2 - S,, b = 2S,, c = 2E+ 1 -N/2 - S,) of U(2!+ 1) an 
refers to a particular arrangement of numbers cli in each of the 2a + b = N tab~~~~ 
boxes. The labels N, I, S,, Ii& and M, have the usual meaning. 

The final two-body matrix element is to be evaluated between the states listed with 
one additional label CY,, = ah and with the resulting tableau (~7). The extra box is 
added in such a way as to bring the total spin of the two states into agreement, if they 
differ, i.e., 2S-, = (So+S3=2$‘_, if S;=S,r i or 2§-,=2Sb+ 1 if Sk=S,. 
The sum in (2.2) is over p = 1 . . . IV, rather than a sum over, say, p and 4 each 
varying independently from 1 ..a N (as implied by Fig. 4 of [3]). This is so because 
the only nonzero matrix elements are between tableaux differing in ML values of i 1 
or 0. Between any two such tableaux the matrix element will vanish unless a: = CX~ for 
all i except the value p, for which a; = olP + y. Note also that once the ~artic~i~ 
values of ML, ML and M,, I$ have been specified only one value of y wih be 
operative. 
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The two-body matrix element in (2.2) can be expressed in terms of a graph, for 
ML >M,, 

= 3 fi [(2Si + 1)(2&q + I)]‘” X fi 6(Si, Sl) 
i=O i=p+l 
NP NP 

xsp+4 $?jTas-l (2.3) 

where the notation “NP” stands for no pairs, meaning that all pairs cxi = oi+ r mutual 
to both tableaux are to be excluded. After breaking the graph and reassociating terms, 
we find 

P-3 

I 

so so 
XpZZjTp n AT(i) f j  d(Siy S~)(-1)So+S-1+1’2 1 1 ’ (2.4) 

i=O i=p+ 1 2 2 sl 1 I 

where 

i@(i) = d/(2& + 1)(2X; + 1) 
I 

1 
1 
i 

1 
si 

r+l s:t, I 
(++,+s’-l/2 

(2.5) 

and a(-1) = 1, by definition. For gp we find four possible forms, namely, 

Ep = qs,sg &2sp-, -i- 1)(2Lq-, + 1)(-1)Sp+Si-l-1’2 

X I 
q-1 s,-, 1 

4 f SP I 
@(P - 2) if apZap-Ia~#a~+,+l 

= cqs,sg s(spsp~,)(-l>‘“~-~+“P-~-sd-2 &2s;-, + 1)(2SL-, f 1) 

1 S 
X 

p-2 q-2 1 

r i $4 I 

if ap=ap-ra~#a;+, 

~~(s;+,s;~,)(-1)‘“~+’ &2sp + 1)(2Sp-I + 1) 

X I 
s;-, s,-, 1 

1 i sp I 
mP - 2) if ap#ap-Ia~=a~+, 

= 6(SPSP~,) 6(s;+,s;-,) I/(2S,-, + 1)(2SL-, + l)(-l)S~-z+S~-l-vz 

I 

S 
X 

p-2 s;-2 1 
if 1 1 I ap==ap-,a:,=a;,,. 

T %-I 
(2.6) 
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With (2.3)--(2.6) in (2.2) we find for the reduced matrix element, for y = 0, -1 
(M;=M,,M;=M,i- 1) 

= : (-l)‘-“~.P+y~z(l+ 1)(21+ 1) 
p=1 ( 

I 1 1 ‘3 - p-3 

-m;,, -Y ml,P )y’ 
pp n l@(i) 

i=O 

P-1 

X 6(ai, clp + y) n 6(a: 3 ai) fi 6(aiY aj) fi 6(s,9 s:)’ 

i=l i=p+ i i=pi 1 

(2.7) 

It is obvious that the case y = 1 (h4; = ML - 1) need not be considered separately 
as for that case one merely changes all primed quantities to unprirned, and vice versa, 
and then take y = -1. 

We now consider each of the two cases y = 0, y = -1 separately. 

Case A. y=O (ML =ML)’ 

In this case ai = a{ (i = 1, N). After removing all mutual pairs in our tableaux, we 
find ai # q (i f j = l,..., N) and (2.7) takes the form 

((a’>; ~“wf; II v”,, II (a>; ~N&w 

= fi d(a&) 2 fi s(sis;)(l+ 1 -a,)(--i)‘o’s;-‘-~/21/1~ 
i=l p=I i=p 

x @s,-, + 1)(2SL-, + I) 
1 

s;-, sp-i 1 p-2 

i 
1 
z 

s n d?(i). (2.8) 
P i i=0 

In the special instance where 2S, = N and S, = Sb, i.e., single-column tableaux, or 
Slater determinant, we find 

using the fact that Sj = S; and Si+, = Si - f. 

Case B. y=-1 (M;=M,+ 1). 

In this case ai = CY[ for all i except a; = aP - 1 and (2.7) takes the form 

((a’); PS$W~II V,-d ]j (a); INSaM,) 

P--l 

= &w:, ML + 1) jJ cqa:, a,) fi &l;, cYi) I”r qs; Si) 
i=l i=p+ I i=p+ I 
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Again for the special case of Sb = S, = N/2 we will have 

= (-1) N+l Jii3i-yxJ~. @11) 

In closing this section it should be noted that once the computations of the Vs, 
matrix elements has been completed, the transformation to states of, say, definite L is 
quite simple. We write 

(IN; L’(K) S’ML z’ /I v,, 11 P; L(K) SM, T) 

= I2l yg @$(L’(K’) S’MLZ’) @,(L(K) SM, z) 

x ((a’) I’; ZNS’ML I( v,, (I (a)& ZNSML). (2.12) 

The double summation ranges independently over the QML and Qa; tableaux at the 
ML and ML levels, respectively, and the transformation coefficients r@,@(K) S,M,r) 
are those defined by Drake et al. [l] (to within a phase) 

/IN; LS,M,M,z) = 2 @,(LS,M, z) 1 (a)& ZNS,M,Ms), (2.13) 
I=1 

where the index I refers to the Ith tableau in the list of QM, tableaux at the M,th 
level. 

In our notation the @,(L(K) SM,z) are defined recursively by 

@,(L(K) SM, z) = - 
2 a;(21 + 1 - a;) 

(L +ML + l)(L -ML) I’=I 2 
E 

P 
1 I,I’ 

X @,,(L(K) SM, + lr) (2.14) 

corresponding to Eq. (9) of [l] and 

cl+(L (K) S, ML z) = D - ’ &“,(L(K) S, ML 2) (2.15) 

hIaX 
= D-’ c [&I, K) - @,(L(K’) S,M,z) @,(L(K’) S,M,z)] 

L(K’)=ML 

corresponding to the projection operator technique outlined in Eqs. (11) and (12) and 
text of [ 11. The bracketed quantity in (2.14) refers to the matrix element E, between 
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the 6’th tableau at level ML + 1 and the Ith tableau at level. M, multiplied by a factor 
which depends on the a; which is changing (ap = oil, + 1). In (2.15) D is sirnp~~ a 
normalization factor given by 

D*= ‘2 [&;,(L(K) S&,Z)]~~ (2.16) 
Z=l 

Note that the ,(L(K) S,M,r) satisfy 

QML 
z-l (P,@(K) S,M, z) !q(L’(K’) S,M, z’) = 6(L, L’) 6(K, K’) cT(z, 2’). (2.14) 

3. PROGRAMMING CONSIDERATIONS 

The entire scheme of the spin-own-orbit matrix element calculation, in the unitary 
group approach, has now been programmed. We have coded the programs in 
assembler language. They constitute a string of four programs each less than 2 
words (one word = 16 bits) in length so that a unit of limited size can handle 
sequentially. The first of these, “GENPAL,” generates and stores on disk the 
list of tableaux corresponding to a given partition. The second, ‘6~LL~AT~39 
generates and stores on disk the matrix elements of the lowering operator L’ 
(cf. [ 11) to be used in the generation of the /IN; LSM~M,r) vectors. The thir 
program, “ZOMAR,” calculates and stores the numerical factors @I 
Eqs. (2.13~(2.15)) multiplying the various tableau components of these 

Finally, the fourth program, “SPNORB,” uses the files generated by ’ 
and by “ZOHAR” to calculate and eventually output the matrix elements of the 
reduced spin orbit operator, i.e., 

The following schematic diagram illustrates the relations among the four 

O/P on LP 

In the first program we utilize an approach [5j whereby a Weyl tableau is 
represented in one “word,” PALB(a), such that 

a+b 
p&B(a)= c 22”1-2 + 5 22a;-‘, 

i=l i=l 
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where the a: represent the tableaux labels in the right and left columns 

<’ <’ 
a+b 

We start with the tableau corresponding to M,(max). It is, for a given tableau shape 
(partition), given by 

a+b 

PALB(max) = c 2”-* + 2 2*‘-*, 
i=l i=l 

that is, the choice of minimum of labels. Next the program proceeds to generate the 
remaining tableaux at successive ML levels by operating with a “one-step” operator 
(cf. [ 11). This is the factor E,, in Eq. (2.14). 

The second and third programs follow the methods described in [ 11. Starting with 
the tableau with maximum ML, the lowering operator connects tableaux in each ML 
row with the ones in the row beneath (viz. Eq. (2.14)). This way all QM,+ I vectors 
] ZN; LSM,M,z) with L = ML -t l,..., L,,, in the M,th level can be generated from the 
vectors in the (ML + 1)th level. The remaining QML - QML+, vectors /IN; L = ML, 
SM,M,z) are generated through a projection operator technique. As there may be 
more than one such vector for a given ML value, we write our vectors as 

where K indicates the column of the projection operator from which the vector was 
extracted (viz. Eq. (2.15)). The fourth and last program is coded to utilize expressions 
(2.8) and (2.10) together with (2.12). 

Consequently, the final output of “SPNORB” is a reduced matrix element 

(ZN; L’(K’) S’M;z’I) V,, /IIN; L(K) SM,z), 

where all symbols stand for their usual meaning and r stands for any additional 
quantum numbers needed to specify the states involved. 

Regarding the use of minicomputers and assembler language two points should be 
made. First, since minicomputers are becoming commonplace in many laboratories, it 
is important to realize what complicated a job can be performed with them. Second, 
although the detailed expressions can be evaluated using most high-level languages, 
inherent in this method are a number of operations, including single bit manipulation 
and arbitrary precision techniques which naturally suggest the use of assembler 
codes. In addition, it should be noted that assembler codes greatly increase the effec- 
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tiveness of the programming when measured in terms of run-time and/or memory 
allocation. 

We have compared our data for the reduced matrix elements with those tabulates 
by Karwowski et al. [4] in an jP; LSJM,z) representation. We have found full 
agreement up to a roundoff error. Note that in our method the results are calculate 
and expressed as the square root of a ratio of integers and are therefore exact. 

4. A SAMPLE CALCULATION 

Let us consider the example of the diagonal, reduced matrix elements of the twgt 
L = 7 states of “f5 (i.e., I= 3, N = 5 and S = 3) with projections ML = L and 
(i.e., the “stretched” states). This example serves to illustrate the use of Eq. ( 
as a comparison with the decimal values tabulated by [4]. 

Recalling that the vectors are defined by 1 ZN; k(z) SMLM,) we have in terms of 
tableaux (as calculated by “ZOHAR”) 

(4.2) 

where the r = 1, 3 label denotes that columns 1 and 3 of the projection matrix de~ne~ 
by [2] (cf. also Eq. (2.15) above) were used to generate the transformation coef- 
ficients shown above. 

The diagonal reduced matrix element of (4.1) is therefore expressed as 

(f”; 7(l): 7;S/I v,, IIf”; 7(1)$7;$) 

(4.3) 

with a similar expression for (4.2). The cross-terms in (4.3) will all vanish, since the 
tableaux differ in each case by more than one a-label, leaving us with a sam of 
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diagonal tableau matrix elements only. Defining the sum of (4.3) and the 
corresponding value for the state (4.2) as W, we find 

(4.4) 

Now before we can compare our values with those of [4] we must perform a 
transformation to J-M, labelled states. Since we are concerned only with the 
J = MJ case we will have 

where C,, are the elements of a unitary matrix. (Recall that the breakdown of 
Racah’s labelling scheme occurs precisely because of this indefiniteness in the 
labelling of states of the same L.) 

If we suppress all labels except 7 and r, we can write for the diagonal matrix 
elements 

Summing over r we find 

=c (tl vso I~>, (4.7) 
z 

where we have used the fact that the C,, form a unitary matrix. In terms of the 
reduced matrix elements we have, from (4.4) 

r (VII vso II V)KSF = 4-y-x w 

= ($+!?)(-I&/;) 

95 -!i- =-- 
2 21 1 (4.8) 
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where the L dependent factor derives from the different definitions of the reduce 
matrix elements in [4] and this work. 

The left-hand side of (4.8) is, from [4], 

#Cl; f’/ V,, j];Kl; f”) = 11.2996545791, (4.9) 

(;K2;f')l V,, /:K2;f')= ~4.Q901634025, 

which yields the sum 

To within a phase and roundoff error there is precise agreement between (4.11) and 
(4.8). Note in (4.9) and (4.10) the notation is ) *‘J’ L(q); r”), where spectroscopic L- 
labelling is used and u is the seniority number which fails to differentiate between the 
two K-states, thus requiring the additional label q. In the definite "L" transformed 
unitary group scheme, the single arbitrary label 2 is needed Iviz. (4.1) and (4.2)1 to 
perform the same task, since the states are defined by the particular linear 
combinations of tableau states, to within a unitary transformation. 

5. CONCLUSION 

The explicit expressions used in the minicomputer implementation as presented in 
this work help demonstrate once again [2] the relative simplicity, power and 
versatility of the unitary group approach to spectroscopic calculations. Despite its 
obvious advantages, the method has yet to gain the acceptance it deserves in atomic 
physics. In contrast, the use of unitary group theory by quantum chemists for solving 
molecular problems is becoming more common 161. 8ur work at present is directed 
toward the treatment of systems of non-equivalent (mixed configuration) electrons 
and it appears that the expressions involved will also lend themselves to an easy 
implementation on the minicomputer. 
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